Skip to content. Skip to navigation

Portal do CFP

Sections
Personal tools
Document Actions

Alessandro Alberucci, Chandroth P Jisha, and Gaetano Assanto (2016)

Breather solitons in highly nonlocal media

We investigate the breathing of optical spatial solitons in highly nonlocal media. We use a generalization of the Ehrenfest theorem (1990 Am. J. Phys. 58 742) leading to a fourth-order ordinary differential equation, the latter ruling the beam width evolution in propagation. In actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell (1997 Science 276 1538) cannot accurately describe the dynamics of self-confined beams: the transverse size oscillations have a period which not only depends on power, but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.