Double Exchange, Magnetism and Transport in Condensed Matter Physics

J.M.B. Lopes dos Santos1 V.M. Pereira1 E.V. Castro1 A.H. Neto2

1Universidade do Porto & 2Boston University

Advances in Physical Science: meeting in honour of Professor Antonio Leite Videira, U. Aveiro, September, 5-7, 2005
Outline

1 Double Exchange
 • Exchange Mechanisms
 • Manganites and DE

2 Ferromagnetic Transition
 • Variational Mean-Field
 • Recursion Method

3 $\text{Eu}_{1-x}\text{Ca}_x\text{B}_6$: A Double Exchange System?
 • Experimental signatures
 • The Double Exchange Model
 • Polaron and Phase Separation

4 Summary
Magnetic Interactions in Condensed Matter, are hardly ever “properly” magnetic.
Magnetic Interactions in Condensed Matter, are hardly ever “properly” magnetic.
Heisenberg exchange

- Coulomb exchange between localized states

\[J_{ij} = V_{ji} \]

- Heisenberg exchange is ferromagnetic (Pauli Principle)

\[-J \mathbf{S}_i \cdot \mathbf{S}_j \quad J > 0 \]
Heisenberg exchange

- Coulomb exchange between localized states

\[J_{ij} = V_{ji} \]

Heisenberg exchange is ferromagnetic (Pauli Principle)

\[-JS_i \cdot S_j \quad J > 0 \]
Anderson exchange

- Hopping between localized states

\[\text{Anderson exchange is anti-ferromagnetic (Pauli Principle)} \]

\[-J \mathbf{S}_i \cdot \mathbf{S}_j \quad J < 0 \]
Anderson exchange

- Hopping between localized states

- Anderson exchange is anti-ferromagnetic (Pauli Principle)
 \[-JS_i \cdot S_j \quad J < 0\]
Manganites

- Chemical formula, AMnO$_3$

A = La, Nd, Pr, Ca, Sr, Ba, Pb

- $A^{2+}Mn^{4+}O_3^{2-} \rightarrow Mn$ is $(3d)^3$ ($x = 1$)
- $A^{3+}Mn^{3+}O_3^{2-} \rightarrow Mn$ is $(3d)^4$ ($x = 0$)
Manganites

- Chemical formula, AMnO_3

 - $A = \text{La, Nd, Pr, Ca, Sr, Ba, Pb}$

 - $A^{2+}\text{Mn}^{4+}\text{O}_3^{2-} \rightarrow \text{Mn is (3d)}^3 \quad (x = 1)$

 - $A^{3+}\text{Mn}^{3+}\text{O}_3^{2-} \rightarrow \text{Mn is (3d)}^4 \quad (x = 0)$

 E.V. Castro (MSc Thesis, UA)
Manganites

- Chemical formula, AMnO_3

- $A = \text{La, Nd, Pr, Ca, Sr, Ba, Pb}$

 - $A^{2+}\text{Mn}^{4+}\text{O}_3^{2-} \rightarrow \text{Mn is (3d)}^3 \quad (x = 1)$
 - $A^{3+}\text{Mn}^{3+}\text{O}_3^{2-} \rightarrow \text{Mn is (3d)}^4 \quad (x = 0)$
Double Exchange

\[\text{Mn}^{4+} \quad O^{2-} \quad \text{Mn}^{3+} \]

\[\text{Mn}^{3+} \quad O^{-} \quad \text{Mn}^{3+} \]

\[\text{Mn}^{3+} \quad O^{2-} \quad \text{Mn}^{4+} \]

\[t_{\text{Mn-O}} \]
Double Exchange Hamiltonian

Ferromagnetic Kondo model

\[\hat{H}_{FK} = -\sum_{i,j,\sigma} tc_{i\sigma}^{\dagger} c_{j\sigma} - J_H \sum_{i} \sigma \cdot \mathbf{S}_i \]

\[J_H \gg t, \quad S \gg 1 \quad \text{(classical } \mathbf{S}) \]

In low energy sector, electrons have spin parallel to \(\mathbf{Mn} \) spin.

Double Exchange (DE) Model

\[\hat{H}_{DE} = -\sum t_{ij} \left[\{\mathbf{S}\} \right] c_i^{\dagger} c_j t_{ij} \]

\[t_{ij} = t \langle \theta_i, \varphi_i | \theta_j, \varphi_j \rangle = t \cos \left(\frac{\theta_{ij}}{2} \right) e^{\varphi_{ij}} \]
Double Exchange Hamiltonian

Ferromagnetic Kondo model

\[\hat{H}_{FK} = - \sum_{i,j,\sigma} t c_{i\sigma}^\dagger c_{j\sigma} - J_H \sum_i \sigma \cdot S_i \]

\[J_H \gg t, \quad S \gg 1 \quad \text{(classical S)} \]

- In low energy sector, electrons have spin parallel to Mn spin.

Double Exchange (DE) Model

\[\hat{H}_{DE} = - \sum t_{ij} \{S\} c_{i}^\dagger c_{j} t_{ij} \]

\[t_{ij} = t \langle \theta_i, \varphi_i | \theta_j, \varphi_j \rangle = t \cos \left(\frac{\theta_{ij}}{2} \right) e^{\phi_{ij}} \]
Warning

Manganites are much more than DE (orbital degeneracy, phonons, charge ordering, inhomegenities).
Warning

Manganites are much more than DE (orbital degeneracy, phonons, charge ordering, inhomegeneties).
Effective Spin Hamiltonian

- $\{S\} \Rightarrow \mathcal{F}_{el}[\{S\}] \Rightarrow \mathcal{E}_{el}[\{S\}] \quad (T \ll T_F)$
- $\mathcal{F}_s(T) = -\beta^{-1} \ln \text{Tr}\{S\} e^{-\beta \mathcal{E}_{el}[\{S\}]}$
- Mean Field Hamiltonian, $\hat{H}_{mf} = -\mathbf{h} \cdot \sum_i S_i$

$$\mathcal{F}_{mf}(\mathcal{M}) = \langle \mathcal{E}_{el} \rangle_{pm} - TS_{pm}(\mathcal{M})$$
Effective Spin Hamiltonian

- $\{S\} \implies F_{el}[\{S\}] \implies E_{el}[\{S\}]$ \quad (T \ll T_F)
- $F_s(T) = -\beta^{-1} \ln \text{Tr}_S e^{-\beta E_{el}[\{S\}]}$
- Mean Field Hamiltonian, $\hat{H}_{mf} = -\mathbf{h} \cdot \sum_i S_i$

\[F_{mf}(\mathcal{M}) = \langle E_{el} \rangle_{pm} - TS_{pm}(\mathcal{M}) \]
Effective Spin Hamiltonian

- \(\{S\} \rightarrow \mathcal{F}_{el}[\{S\}] \rightarrow \mathcal{E}_{el}[\{S\}] \quad (T \ll T_F) \)
- \(\mathcal{F}_s(T) = -\beta^{-1} \ln \text{Tr}\{S\} e^{-\beta \mathcal{E}_{el}[\{S\}]} \)

- Mean Field Hamiltonian, \(\hat{\mathcal{H}}_{mf} = -\mathbf{h} \cdot \sum_i S_i \)

\[\mathcal{F}_{mf}(\mathcal{M}) = \langle \mathcal{E}_{el} \rangle_{pm} - T S_{pm}(\mathcal{M}) \]
Effective Spin Hamiltonian

- $\{S\} \rightarrow F_{el}[\{S\}] \rightarrow E_{el}[\{S\}] \quad (T \ll T_F)$
- $F_s(T) = -\beta^{-1} \ln \text{Tr}\{S\} e^{-\beta E_{el}[\{S\}]}$
- Mean Field Hamiltonian, $\hat{H}_{mf} = -\mathbf{h} \cdot \sum_i S_i$

$$F_{mf}(\mathcal{M}) = \langle E_{el}\rangle_{pm} - TS_{pm}(\mathcal{M})$$
Density of States of Disordered Systems.

Lanczos Tridiagonalization

\[|0\rangle \]
\[b_0 |1\rangle = \hat{H} |0\rangle - a_0 |0\rangle \]
\[b_1 |2\rangle = \hat{H} |1\rangle - a_1 |1\rangle - b_0^* |0\rangle \]
\[\vdots \]

\[\begin{align*}
 a_0 &= \langle 0 | \hat{H} | 0 \rangle \\
 b_0 &= \langle 1 | \hat{H} | 0 \rangle \\
 a_1 &= \langle 1 | \hat{H} | 1 \rangle \\
 b_1 &= \langle 2 | \hat{H} | 1 \rangle
\end{align*} \]
\[\hat{H} = \sum_{<ij>} t_{ij} c_i^\dagger c_j + \sum_i \epsilon_i c_i^\dagger c_j \]

\[
\Rightarrow \sum_n a_n |n\rangle \langle n| + b_n |n+1\rangle \langle n| + b_n^* |n\rangle \langle n+1|
\]

\[
G_{00}(\omega) \equiv \langle 0| \frac{1}{\omega - \hat{H}} |0\rangle = \frac{1}{[G_{00}^0]^{-1} - |b_0|^2 G_{11}}
\]
\[\hat{\mathcal{H}} = \sum_{\langle ij \rangle} t_{ij} c_i^\dagger c_j + \sum_i \epsilon_i c_i^\dagger c_j \]

\[\Rightarrow \sum_n a_n \ket{n} \bra{n} + b_n \ket{n+1} \bra{n} + b_n^* \ket{n} \bra{n+1} \]

\[\sum_{n} a_n \ket{n} \bra{n} + b_n \ket{n+1} \bra{n} + b_n^* \ket{n} \bra{n+1} \]

\[G_{00}(\omega) \equiv \langle 0 | \frac{1}{\omega - \hat{\mathcal{H}}} | 0 \rangle = \frac{1}{[G_{00}^0]^{-1} - |b_0|^2 G_{11}} \]

\[\begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
= \begin{array}{c}
0
\end{array}
+ \cdots
= \begin{array}{c}
0
\end{array}
+ \cdots
\]
DOS in PARA and FERRO states.

\[G_{00}(\omega) = \frac{1}{\omega - a_0 - \frac{|b_0|^2}{\omega - a_1 - \frac{|b_1|^2}{\omega - a_2 - \ldots}}} \]

Convergence of Coefficients

Density of states
Structure

Eu positions define a cubic lattice

- B₆: 10 Bonding MO (filled).
- Eu²⁺: \(S_{\text{Eu}} = 7/2, a = 4.185 \, \text{Å} \).

EuB₆ is semi-metal,

- Band overlapp at X point.

or a (doped) semiconductor?

- \(\Delta_{\text{ARPES}} \sim 1 \, \text{eV} \).

Crystal Structure

Mandrus et al. (PRB, 2003)
Structure

Eu positions define a cubic lattice

- B_6: 10 Bonding MO (filled).
- Eu^{2+}: $S_{\text{Eu}} = 7/2$, $a = 4.185$ Å.

EuB$_6$ is semi-metal,

- Band overlap at X point.

Electronic Structure

$\Delta_{\text{ARPES}} \sim 1$ eV.

Massidda et al. (ZPB, 1997)
Eu positions define a cubic lattice

- B_6: 10 Bonding MO (filled).
- Eu^{2+}: $S_{\text{Eu}} = 7/2$, $a = 4.185 \text{Å}$.

EuB$_6$ is semi-metal,

- Band overlap at X point.

or a (doped) semiconductor?

- $\Delta_{\text{ARPES}} \sim 1 \text{ eV}$.

ARPES measurement

Denlinger et al. (PRL, 2002)
EuB$_6$ is a ferromagnetic metal.

- $\rho(T = 0) \approx 5\, \mu\Omega\cdot\text{cm}$.
- $T_C \approx 15\, \text{K}$.
- $M_{\text{Sat.}}: 7\, \mu_B /\text{Eu}$

Small carrier density (B$_6$ vacancies)

- $n_e(T > T_C) \approx 0.003$ per unit cell.
- $n_e(T > T_C) \approx 0.009$ per unit cell.

Carrier density highly enhanced below T_C

DC resistivity: $\rho(T)$ adm M

Paschen et al (PRB, 2000)
EuB$_6$ is a ferromagnetic metal.

- $\rho(T = 0) \approx 5 \mu\Omega \cdot \text{cm}$.
- $T_C \approx 15 \text{ K}$.
- $M_{\text{Sat.}}: 7 \mu_B / \text{Eu}$

Small carrier density (B_6 vacancies)

- $n_e(T > T_C) \approx 0.003$ per unit cell.
- $n_e(T > T_C) \approx 0.009$ per unit cell.

Carrier density highly enhanced below T_C

Paschen et al (PRB, 2000)
EuB$_6$ is a ferromagnetic metal.

- $\rho(T = 0) \approx 5\, \mu\Omega\cdot\text{cm}$.
- $T_C \approx 15\, \text{K}$.
- $M_{\text{Sat.}}: 7\, \mu_B / \text{Eu}$

Small carrier density (B_6 vacancies)

- $n_e(T > T_C) \approx 0.003$ per unit cell.
- $n_e(T > T_C) \approx 0.009$ per unit cell.

Carrier density highly enhanced below T_C

Paschen et al (PRB, 2000)
Blue shift of plasma frequency at T_C:

FM enhances ω_P

- Broderick et al (PRB 2002)

Scaling of ω_P with M

- Broderick et al (PRB 2002)

Plasma frequency scales with the magnetization:

$$\omega_P(T, H) = \omega_P(M)$$
To insulator (upon doping).

Increasing the Ca content:

- $\rho(T)$ evolves to an insulating behavior ($T > T_C$)
- T_C decreases with doping strength χ.
- n_e is (more) enhanced below T_C.

A mobility gap?

- $\rho(T)$ scales exponentially $\mathcal{M}(T)$.
- ω_P also scales exponentially with $\mathcal{M}(T)$.

$\rho(T)$ at 40% doping

Wigger et al. (PRB 2002)
Increasing the Ca content:

- $\rho(T)$ evolves to an insulating behavior ($T > T_C$).
- T_C decreases with doping strength x.
- n_e is (more) enhanced below T_C.

A mobility gap?

- $\rho(T)$ scales exponentially $M(T)$.
- ω_P also scales exponentially with $M(T)$.

Peruchi et al. (PRL 2004)
Disorder and localization in the DEM

What can DE model provide?

- \(N(E, \mathcal{M}) \equiv \left\langle N(E, \{\vec{S}_i\}) \right\rangle_{\text{pm}} \)
 (Recursion Method)
- \(\mathcal{M} \) dependent FL, \(E_F(\mathcal{M}) \)
- \(\mathcal{M} \) dependent mobility
 edge, \(E_C(\mathcal{M}) = \left\langle E_C(E, \{\vec{S}_i\}) \right\rangle \)
 (Transfer Matrix)

\[E_C \lesssim E_F \text{ for } n_e \sim 10^{-3}. \text{ The down shift of } E_C(\mathcal{M}) \text{ enhances } n_e! \]
Disorder and localization in the DEM

What can DE model provide?

- \(N(E, \mathcal{M}) \equiv \langle N(E, \{\vec{S}_i\}) \rangle_{\text{pm}} \)
 (Recursion Method)
- \(\mathcal{M} \) dependent FL, \(E_F(\mathcal{M}) \)
- \(\mathcal{M} \) dependent mobility edge, \(E_C(\mathcal{M}) = \langle E_C(E, \{\vec{S}_i\}) \rangle \)
 (Transfer Matrix)

\[E_C \lesssim E_F \text{ for } n_e \sim 10^{-3}. \text{ The down shift of } E_C(\mathcal{M}) \text{ enhances } n_e! \]
Disorder and localization in the DEM

Results for E_C

$(\text{Bottom of the band is at -6 in the left axis).}$

$$\Delta(M, n_e) = E_F(M) - E_C(M, n_e).$$

$E_C \lesssim E_F$ for $n_e \sim 10^{-3}$. The down shift of $E_C(M)$ enhances n_e!
Disorder and localization in the DEM

What can DE model provide?

- \(N(E, \mathcal{M}) \equiv \langle N(E, \{ \vec{S}_i \}) \rangle_{pm} \) (Recursion Method)
- \(\mathcal{M} \) dependent FL, \(E_F(\mathcal{M}) \)
- \(\mathcal{M} \) dependent mobility edge, \(E_C(\mathcal{M}) = \langle E_C(E, \{ \vec{S}_i \}) \rangle \) (Transfer Matrix)

\begin{align*}
E_C & \lesssim E_F \text{ for } n_e \sim 10^{-3}. \text{ The down shift of } E_C(\mathcal{M}) \text{ enhances } n_e!
\end{align*}
Results for the transport properties - EuB$_6$

- **Carrier density**

- **Plasma frequency**

- Only E_F is tuned for $T > T_C$.

- $\omega_P^2 \propto \langle \mathcal{H} \rangle = t \int_{E_C} E \int_{-\infty}^{\infty} N(\varepsilon, \mathcal{M}) f(\varepsilon) \varepsilon d\varepsilon$.

These (and other) results reproduce the experimental signatures of EuB$_6$!
Doping dilutes magnetic sites and hopping in the lattice: expect mobility edge to move into band.

Proposed Phase diagram

We expect $\text{Eu}_{0.60}\text{Ca}_{0.40}\text{B}_6$ to lie between x_{MI}^P and x_{MI}^F. Above T_C it has a mobility gap.
Independent Polaron

By creating a ferromagnetic bubble, an electron lowers its energy; but there is a magnetic entropy cost.

\[\Delta F_{pol}(R, T)/n_e = 4t - 6t \cos(\pi/(R+1)) + TR^3 \log(2S+1) - TS_{cfg} \]

- Minimization gives \(R_{eq}(T) \), and stability temperature, \(T_m \).
- Percolation argument estimates \(T_C \).

Electronic wavefunction of Polaron.

Polarons are seen in Raman scattering at the predicted temperatures. \(T_C \) is depressed relative to mean-field estimate.

J. Lopes dos Santos et. al. Universidade do Porto & Boston University
By creating a ferromagnetic bubble, an electron lowers its energy; but there is a magnetic entropy cost.

\[\Delta F_{\text{pol}}(R, T)/n_e = \]
\[4t - 6t \cos(\pi/(R + 1)) + TR^3 \log(2S + 1) - TS_{\text{cfg}} \]

- Minimization gives \(R_{\text{eq}}(T) \), and stability temperature, \(T_m \).
- Percolation argument estimates \(T_C \).

Electronic wavefunction of Polaron.

Polarons are seen in Raman scattering at the predicted temperatures. \(T_C \) is depressed relative to mean-field estimate.
Phase separation

At low densities system does not support homogeneous phase!

- Below $T_C(n)$, there are two phases of different densities, n_+, n_-
- In GCE (constant μ) transition is first order, $\mathcal{M}(T_C) \neq 0$, $\Delta n \neq 0$,

Phase diagram at low n_e.

PS region much larger than polaron region

Where have all the polarons gone?.
Phase separation

At low densities system does not support homogeneous phase!

- Below $T_c(n)$, there are two phases of different densities, n_+, n_-
- In GCE (constant μ) transition is first order, $M(T_c) \neq 0$, $\Delta n \neq 0$,

Phase diagram at low n_e.

PS region much larger than polaron region

Where have all the polarons gone?.
Electrons are charged!

- Electrostastic energy
 \[E_{el} = \frac{2}{5} e^2 \pi n^2 R^2 \left(\frac{2 + x - 3x^{1/2}}{x} \right) \]

- Energy of localization
 \[\frac{E_{loc}}{E_{\infty}(n)} = \left(1 + \frac{15}{16} \left(\frac{\pi}{6n} \right)^{1/3} \frac{x^{1/3}}{R} \right) \]

- Equilibrium radius \(\sim R_{pol} \)

PS region shrinks to polaron region
Polarons are back!
Coulomb Suppression of Phase Separation

Electrons are charged!

- Electrostatic energy
 \((x = V_+/V_-) \)
 \[
 \frac{E_{el}}{V} = \frac{2}{5} e^2 \pi n^2 R^2 \frac{2 + x - 3x^{1/2}}{x}
 \]

- Energy of localization
 \[
 \frac{E_{loc}}{E_\infty(n)} = \left(1 + \frac{15}{16} \left(\frac{\pi}{6n}\right)^{1/3} \frac{x^{1/3}}{R}\right)
 \]

- Equilibrium radius \(\sim R_{pol} \)

PS region shrinks to polaron region
Polarons are back!
Controversy

Does Double Exchange apply when $J \lesssim t$?

- Yes, at very low densities.
- Low energy states have some polarization along local Mn spin direction, even at $M = 0$.
- In weak coupling one recovers T_{C}^{RKKY} from DE picture.

At very low density, many of the concepts (M dependent mobility edge) go through, even in weak coupling $RKKY$ limit.
Controversy

Does Double Exchange apply when $J \ll t$?

- Yes, at very low densities.
- Low energy states have some polarization along local Mn spin direction, even at $\mathcal{M} = 0$.
- In weak coupling one recovers T_{C}^{RKKY} from DE picture.

DE is good starting point for intermediate coupling.

At very low density, many of the concepts (\mathcal{M} dependent mobility edge) go through, even in weak coupling $RKKY$ limit.
Does Double Exchange apply when $J \lesssim t$?

- Yes, at very low densities.
- Low energy states have some polarization along local Mn spin direction, even at $\mathcal{M} = 0$.
- In weak coupling one recovers T_C^{RKKY} from DE picture.

At very low density, many of the concepts (\mathcal{M} dependent mobility edge) go through, even in weak coupling $RKKY$ limit.
Summary

- **DE for Double Exchange or Deceptively Easy?**

- The $\text{Eu}_{1-x}\text{Ca}_x\text{B}_6$ seems to be a cleaner (if unexpected) case of a DE system.

- Simple ideas still have (some) room in Condensed Matter Theory.
Summary

- DE for Double Exchange or Deceptively Easy?

- The Eu$_{1-x}$Ca$_x$B$_6$ seems to be a cleaner (if unexpected) case of a DE system.

- Simple ideas still have (some) room in Condensed Matter Theory.
Summary

- **DE** for **Double Exchange** or **Deceptively Easy**?

- The $\text{Eu}_{1-x}\text{Ca}_x\text{B}_6$ seems to be a cleaner (if unexpected) case of a DE system.

- Simple ideas still have (some) room in Condensed Matter Theory.